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Abstract

The field of planning has focused on several methods of using domain-specific knowledge. The three

most common methods, use of search control, use of macro-operators, and analogy, are part of a

continuum of techniques differing in the amount of reused plan information. This paper describes

TALUS, a planner that exploits this continuum, and is used for comparing the relative utility of these

methods. We present results showing how search control, macro-operators, and analogy are affected

by domain regularity and the amount of stored knowledge.

*. Also affiliated with Sterling Software and the University of California, Irvine





1. Introduction

Researchers have explored three broad approaches to using domain-specific knowledge in the plan-

ning process. Analogical or case-based methods retrieve stored plans and adapt them to novel

problems (Hammond, 1990; Kambhampati, 1990; Veloso & Carbonell, 1989). A second scheme

uses stored plans, or macro-operators, as though they were primitive operators (Fikes, Hart, &

Nilsson, 1972; Korf, 1982; Iba, 1989). A third approach draws on more distributed search-control

knowledge to direct the selection of operators, states, or goals (Laird, Rosenbloom, & Newel], 1986;

Minton, 1990a; Jones, 1989).

In this paper we present TALUS, a system that can use domain-specific plan knowledge in each of

these modes. This lets us compare the three approaches experimentally to determine the conditions

under which each is most appropriate. We begin by describing TALUS' representation of plan

knowledge, followed by its behavior when using this knowledge analogically, as macro-operators,

and as search-control rules. After this we propose hypotheses about the relations among these

methods, characteristics of planning domains, and the behavior of the methods in such domains.

We then report experimental studies that test these hypotheses. In closing we draw some tentative

conclusions and outline directions for future work.

2. The TALUS Planner

Previous researchers have assumed that the analogical, macro-operator, and search-control ap-

proaches to planning are completely distinct. In contrast, we believe these three methods are

special cases of a more general framework, which views the methods as differing along a continuum

based on the conditions of reuse. In particular, methods like analogical and case-based techniques

fall toward the center of this continuum, in that they check each subproblem of a retrieved plan for

its appropriateness to the current problem. Methods that treat plan knowledge as macro-operators

do not bother to test for relevance; they simply assume that all subproblems are appropriate for

use on the current problem. Search-control methods also dispense with such tests, but because

they assume that subplans are never relevant, and so always search memory for knowledge they

can apply to the current problem. Thus, the continuum runs from automatic reuse of components

(macros), through conditional reuse (analogy), to automatic nonreuse (search-control).

We have implemented this framework in TALUS, a system that can use stored plans in each of

these three ways depending on the setting of a global parameter. The system uses a variant of

means-ends analysis (Newell & Simon, 1972) to construct totally ordered plans using depth-first

search, but we believe the basic ideas carry over to other planning and search schemes. In this

section we describe the structures and processes used in TALUS. We begin by considering those

features shared by the three modes; we then discuss how each method fits into the framework in

turn.
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Figure 1. A plan for moving from one room to another through an open door (solid lines and expressions
in parentheses) and a revised plan for moving through a closed door (dotted lines and bracketed
expressions).

2.1 Representation, Retrieval, and Control

An example from the STRIPS robot domain may clarify the framework that TALUS instantiates.

The solid lines in Figure 1 depict a plan for moving a robot from one room to another through

an open door. This plan takes the form of a means-ends trace, with ellipses representing problems

(and subproblems) and rectangles indicating operators. Although not shown, each problem node

also specifies its current state and the differences between its current and desired state.

The top-level plan (S1) specifies an operator, in this case (move-to ?y ?door), which leads to

one subproblem and its associated subplan (S2) for transforming the current state into one that

matches the operator's preconditions. In general, such traces can also include a second subproblem

(and associated subplan) to transform the state resulting from the operator application 1 into the

original desired state, but in this case that is unnecessary. Each subproblem has the same recursive

structure, which halts with subproblems that can be solved using a primitive operator.

TALUS can use its knowledge of primitive operators, combined with means-ends analysis, to

generate plans of this sort. At each step in developing a plan, the system retrieves operato_rs that

reduce one or more differences in the current problem. It selects one of these operators based

on the current set of differences. The memory system returns all primitive operators that reduce

differences in the current problem. The returned set of primitive operators is then ordered by the

number of differences they resolve and used as the list of alternatives for the current point of the

means-ends search.

Once an operator is selected, TALVS creates two associated subproblems, either of wkich may

be degenerate. If the first subproblem contains any differences (i.e., the operator's preconditions

are not met), TALUS invokes means-ends analysis recursively, selecting an operator and (possibly)

1. In all cases, we use the term 'apply' to indicate simulated application rather than execution in the world.



creating more subproblems. If the system finds a successful subplan, it 'mentally' applies the

operator and again invokes means-ends analysis to solve the second subproblem. Of course, if

TALUS selects an inappropriate operator at any level, it may produce a nonoptimal subplan or fail

to find one entirely. In the latter case, it backtracks and considers the next operator in the set.

However, TALUS can also use plans like that in Figure 1 to constrain search on new problems.

In such cases, the system retains access to primitive operators, but it also retrieves plans whose

differences completely match against those in the current problem. In general, TALUS heeds advice

gleaned from such stored knowledge, since it prefers structures that are more specific (as well as

ones that occur higher in a given plan). Nevertheless, the system uses this retrieved knowledge

quite differently in its three modes, to which we now turn.

2.2 Using stored plans as macro-operators

As we noted earlier, in 'macro-operator' mode, TALUS automatically reuses the components of a

retrieved plan. For instance, suppose the system has the plan in Figure 1 stored in memory and

encounters a problem in which the door between the two rooms is closed. In this case, TALUS

retrieves the stored plan Si and checks its weakest preconditions to see if it can be applied. Since

the weakest preconditions axe not satisfied, the system recursively calls itself with the new problem

of transforming the current state into one that satisfies the plan's weakest preconditions.

In solving this subproblem, TALUS must construct a subplan from primitive operators that move

the robot toward doorl, opens doorl, then move back next to a. The state that results from the

subplan satisfies the preconditions of S1 and the system carries it out. Note that the resulting plan

is different from that depicted in Figure 1 in that the subplan generated to satisfy the weakest

preconditions of the original plan contains three primitive operators and is connected as an upward

branch of $3. Also, the generated plan is not optimal in that the robot moves to doorl and back

to a before proceeding to door1. The system considers the plan to be acceptable despite its lack

of optimality. However, if TALUS had been unable to satisfy the preconditions of S1, the system

would have discarded it and tried to solve the problem using only primitive operators.

2.3 Using stored plans as analogies

In 'analogical' or 'case-based' mode, TALUS checks to determine whether subplans are relevant to

the task at hand. Given the problem described above, this version of the system decides to apply

the move-'co operator stored at the top level of St. However, before using $2, this incarnation

checks to see if the preconditions of the primitive operator associated with S1 (i.e., move-to) are

satisfied. Since they axe not, TALUS decides to reuse $2 and its associated operator go-l:hru, then

considers subplan $3 and decides to use it for the same reason. The preconditions for S3's move-to

match at this point, so the system uses that operator in its new plan.

As in macro-operator mode, this version finds that the closed door is a problem in that moving

to the door does not fully satisfy the preconditions of go-thru. But, here TALUS tries to repair

the plan and retrieves the primitive operator open from memory based on the difference (closed



doorl), preferringit to plans S1, 52, $3, and the other primitive operators. This addition to the

subplan (shown with dotted lines in Figure 1) eliminates the remaining differences and lets TALUS

apply go-thru and move-to, giving a complete plan for the problem.

2.4 Using plans as search-control knowledge

In 'search control' mode, TALUS does not bother to check plan components for relevance because

it never reuses them. Given the above problem, the only information that the system borrows

from plan S1 is the associated operator move-to. Rather than considering the single component

of this plan ($2) for reuse, it creates a subproblem from the missing preconditions of the operator

and uses this to retrieve potentially useful plans and operators from memory. In this case, the

retrieval module selects $2 as its first choice anyway, although this decision requires additional

search through memory. As a result, TALUS decides to apply go-thru at this level of its plan.

This leads to another subproblem, and the system again uses this to retrieve potentially useful

knowledge from memory.

This time the retrieval mechanism accesses four structures - the plan S1, the subplan $3, the

operator move-to, and the operator open - that match the differences equally well and from which

it picks randomly. If TALUS selects S1, $3, or the first operator, matters proceed much as in the

analogical case, with the system finding that move-to does not eliminate all differences, accessing

memory to retrieve the open operator, and producing the plan shown in Figure 1. On the other

hand, if TALUS selects open instead, it finds this operator's preconditions unmet and creates another

subproblem, leading it to retrieve move-to in response. The resulting plan differs in structure from

that in Figure 1, being completely upward branching, although the order in which the two plans

apply operators is the same.

3. The Behavior of TALUS

The literature presents conflicting stories about which planning method is most desirable. Laird

et al. (1986) argue for the superiority of search-control knowledge over macro-operators in terms of

greater transfer, and Minton (1990b) favors the former because they let one interleave operators.

Conversely, some arguments for case-based (Hammond, 1990) and analogical (Veloso & Carbonell,

1989) approaches center on the advantage of retrieving entire plans rather than constructing them

from primitive operators. Claims in favor of macro-operators (Korf, 1982; Iba, 1989) often assume

that certain sequences of operators occur in solutions many times, either in individual problems or

across problems.

Our intuitions suggest that each method is desirable in some domains but not others, and in-

spection of the alternative approaches suggests a more explicit claim.

_
ttypothesis 1. Macro-operator methods are desirable in regular domains, search-control methods

are desirable in nonregnlar domains, and analogical methods are desirable in domains of medium

regularity.



Highly regular domains are ones in which a sma3.l percentage of the possible problem types actually

occur. The macro-operator approach should work well in such domains because the same problems

occur over and over again, and these can be solved with a few macro-operators. In contrast,

nonregular domains are ones in which most of the possible problems actually occur. The search-

control approach should work well in such domains because it provides distributed knowledge that

one can apply in a wide variety of situations. Of course, the hypothesis assumes that plan knowledge

is present in memory, and that this knowledge is relevant to the problems that arise.

This hypothesis is subject to experimental test, but such tests require a more formal definition

of regularity. For any given problem space, we can enumerate all possible states, and we can define

the set of possible problems as the set of ordered pairs of such states. Thus, given a problem space

that contains s states, there exist s(s - 1) possible problems. However, due to symmetries, many

problems may have isomorphic solutions - solutions which only differ how the state objects are

labeled. We will refer to each equivalence class of isomorphic tasks as a problem type. Furthermore,

even if a problem space generates t problem types, only o of the types may actually occur in the

domain. We will use this ratio o/t as our measure of the regularity of a planning domain. 2

This definition lets us further instantiate our hypothesis, but it also suggests a second hypothesis

involving the knowledge available to the planner.

Hypothesis 2. Macro-operator methods are desirable in the presence of considerable plan knowl-

edge, search-control methods are desirable when littIp knowledge is available, and analogical methods

are desirable in the presence of medium levels of knowledge.

Clearly, if memory contains pla_s for every possible problem, then macro-operators should fare

quite well, since they can solve every problem without modification. Similarly, if memory contains

only one or two plans, then search-control rules should do better, since even a few plans may contain

knowledge about many operators that can be used in quite different problems. As with regularity,

analogy should occupy the middle ground with respect to knowledge. Moreover, the effects of

regularity and knowledge should interact. As one introduces more knowledge in nonregular domains,

the difference between macro-operators and search control modes should decrease. Similarly, in the

presence of enough knowledge, changes in regularity should produce few differences in behavior

among planning modes.

Our two hypotheses seem plausible, and they are consistent with arguments in the literature,

but intuitions ca_a be misleading. Thus, it was important that we test our predictions about the

interactions among planning method, domain regularity, and plan knowledge. To this end, we ran

TALUS under a variety of conditions and measured its performance in each situation.

We used the total number of matches as the measure of efficiency in our experiments. This

represents the amount of work done by TALUS' matcher, both in retrieving plans and operators from

memory, and in checking their preconditions for applicability to the current state. More specifically,

it measures the number of constants and variab!esthe system tested for equality. Different calls to

the matcher could cost different amounts, but the total number of matches provides a rough metric

2. This formulation ignores the possibility of problems in which final states are partially specified. It also ignores

the probability of each problem type, as well as regularities due to shared subproblems.



of planning effort. We should note that we limited the effort applied to solving any single problem

to 10,000 matches.

We selected the blocks world as the source of problems and plans for our domains, focusing on

tasks involving four blocks. The problem space for the blocks world is highly symmetrical, producing

many problems with isomorphic initial and final states (i.e., having the same problem type). We

selected ten problem types from the four-block space, and used these to generate random test

problems for each; we also generated, by hand, abstract means-ends traces that specified optimal

solutions for each problem type. To control for problem complexity, all problem types and stored

plans had optimal solutions involving eight primitive operators.

In our initial study, we selected one of these abstract plans and stored it in TALUS' memory. We

then ran the system on varying numbers of problem types that included ones corresponding to the

stored plan, but that included other types as well. This let us systematically vary the regularity of

the domain from 1/t through lO/t, even though we did not know t, the exact number of possible

problem types. Any particular problem type might be nonrepresentative; thus, we averaged over

each of the ten plans, and over all possible sets of test cases that had some overlap with the plan

in memory. We ran TALUS on these test problems in each of its three modes, producing a 10 x 3

experimental design.

Figure 2 (a) shows the results of this experiment, which are mainly consistent with our first

hypothesis. With one plan in memory, a decrease in regularity (represented by an increase in the

number of occurring problem types) increases the total match cost for all three methods, this effect

being strongest for macro-operators. At very high regularity, macro-operators are the most efficient,

but the difference between this mode and analogy is minimal, and difficult to see in the figure. At

low regularity, search control distinctly outperforms macro-operators, but the graph only hints at

being more efficient than analogy; although the curves cross, the error bars are still intermingled.

At intermediate regularity, analogy is clearly more efficient than both macro-operators and search

control.

Our second study was designed to show the effects of memory load on the three problem-solving

strategies. In this case, we fixed the regularity of the testing domain to 10/t and used TALus to

solve the test problems with one, five, and ten plans in memory. Since any particular set of plans

in memory might be nonrepresentative, we averaged over 30 different plan sets for each strategy.

Figure 2 (b) shows the results of this experiment. The data seem mostly consistent with our

second hypothesis, though the fit is not as good as that supporting-the f_rst one. In this case we

see that search control is the most efficient stra_tegy When there are few plans in memory, although

it is not certain whether search control0utperforms analogy. With ten _ns_ men_ory; macro-

operators are more efficient tha_a_ search control, but contrary to our_:t_re_ction, macro-ope_rators

show no improvement over analogy. Finally, at intermec[iate amounts of plan knowledge, analogy

is clearly more efficient then either of the alternative methods.

We believe the unexpected behaviors found in both graphs are due to underspec_fied terms in

the two hypotheses. For instance, the term nonregular in the first hypothesis may not be modeled
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Figure 2. Behavior of TALUS in three planning modes - search control, analogy, and macro-operators on
blocks world problems. Plot (a) demonstrates the effect of regularity with one plan in memory
and (b) demonstrates the effect of changing the number of plans in memory while keeping the
regularity at lO/t.

well by 10/t. 3 On reflection, we think that if we had run our experiments out to a greater number

of problems types (ideally t) that search-control would show a distinct improvement over analogy

in Figure 2 (a). A similar problem affects the results shown in Figure 2 (b). In this case, the

term considerable in the second hypothesis is instantiated by ten plans in memory. However, if

we had run tests with higher numbers of plans (again, ideally t) we might then see that macro-

operators were more efficient than analogy. The other missing cross-over in Figure 2 (b) - showing

that search-control is more efficient thananalogy when there are few plans in memory - is due to

the interaction between the two hypotheses. This cross-over never took place because the domain

at lO/t is too regular, and prevents search control's distributed nature from showing a distinct

advantage over analogy.

Our experiments with TALUS' three problem-solving strategies have borne out most aspects of

our hypotheses. In general, we found that changes in regularity do affect the relative efficiency

of the three modes, and that changes in the amount of plan knowledge memory also affect this

measure. Further, we have identified problems with our experimental parameters that may account

for discrepancies between our hypotheses and results. Consequently, we believe the results of these

preliminary experiments indicate a genera/trend that we should explore further in future work.

4. Directions for Future Work

Our discussion has assumed that a single method is desirable throughout the domain, in that the

same degree of regularity holds across all sets of problems. However, not all domains have this

characteristic. One can imagine planning domains in which some problems occur frequently but

3. A larger sample of problems and problem-types may show that the cross-over actually dows occur at this level of

regularity
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others occur rarely, or in which all problems have the same high-level structure but have quite

different subproblems. For such domains, one method will be desirable for one subset of problems,

whereas another will be desirable for another subset. We suspect that many real-world domains

also have this flavor. The notion of a mixed domain suggests the idea of a mixed method, which

would invoke analogy in some contexts, macro-operators in others, and search-control in still others.

TALUS views analogical reuse, macro-operators, and search control as special cases of a general

method. However, a simple extension to the framework allows for mixed methods. Rather than

specifying whether one tests a plan component and, if not, whether one reuses it, the extended

scheme associates a probability of reuse with each component. If a component's score is very high,

one automatically reuses it without bothering to check for relevance. Similarly, if the probability

is very low, one automatically avoids reuse without bothering to check. In contrast, if a plan

component's score is neither high nor low, one inspects it for relevance, and reuse depends on the

result of this test.

Such probabilistic information supports arbitrary mixtures of methods that are appropriate for

arbitrary distributions of problems. However, it would be tedious and impractical to enter this

information manually. In future work, we plan to automate this process using a simple scheme.

One begins with a set of stored plans for a domain, each having a prior probability of one half; thus,

the default behavior is pure analogical reuse. However, one updates this probability each time a

plan contributes or falls to contribute to a successful plan. Over time, the probabilities for some

components will approach one, so that they come to be reused automatically. The probabilities

for others will approach zero, leading them to be ignored, and still others will have intermediate

probabilities, and thus will still be tested for relevance. The result will be a mixed method that

has been adapted to the distribution of problems for the domain at hand.

The TALUS implementation does not yet include this learning mechanism or the probabilistic

control scheme on which it relies. However, we believe that a version extended in this way could

automatically adapt to domains with non-uniform distributions of problems, and that we can use

experiments with synthetic domains to show that its asymptotic behavior matches or outperforms

analogical reuse, macro-operator techniques, or search-control methods. We also hope to show that

it fares better than these pure methods on real-world planning tasks.
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Appendix A. Characterization of Work

There are many kI systems that address issues of plan reuse. However, differences in domains,

methods, and assumptions make a comparison of these systems difficult. In this appendix, we

consider the assumptions that TALUS makes about its domain, its level of knowledge, and its

problem-solving method. Recall that our intent is to determine properties of the domain and

knowledge that make one strategy more desirable than another.

A.1 The Task

We designed TALUS to assay the merits and shortcomings of three major techniques for domain-

specific planning. The system accepts as input a start state and set of goal conditions, and it

returns a totally ordered sequence of operator with a trace of its derivation. The generated plan

need only solve the presented problem; it need not be optimal or even especially efficient.

Although TALUS' three modes differ in important ways, they all support planning through means-

ends analysis. Consequently, each mode uses information typically available to this method: a set

of primitive STRIPS operators, a current state, and a set of differences (goals not satisfied by the

current state). In addition, TALUS can also use stored plans indexed by differences. The resulting

system provides a good framework for evaluating the conditions under which each of the three

strategies is desirable. Although our work has focused on the efficiency of plan generation, future

experiments will examine other metrics like plan optimality.

A.2 The Approach

Each of TALUS' strategies takes a different approach to creating plans. In search-control mode,

the system uses knowledge in plan memory to decompose a current problem into subproblems.

In macro-operator mode, TALUS uses entire plan schemas (or subplan schemas), together with

primitive operators, to build a solution to the new problem. In analogy mode, the system uses plan

schemas as a template for a new solution, deleting unnecessary subplans and adding new subplans

that were not needed in the stored plan.

Each of TALUS' modes assumes that the environment is static, that primitive operators behave as

advertised, and that any solution path is acceptable. The system also assumes that certain types

of information axe available in plan memory. Each strategy requires that the plans in memory

contain information about the differences they resolve. They use this information to retrieve plans,

subplans and primitive operators.
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In addition, search-control mode requires that each plan include a primitive operator at its top

level, and that it have access to this operators' preconditions and effects. TALUS uses this infor-

mation in a manner similar to STRIPS, testing preconditions to determine operator applicabil/ty

and using the add/delete llst to 'execute' the operator. The macro-operator mode adds the re-

quirements that each plan specify it preconditions for successful application and the sequence of

execution for the primitive operators in the plan. This information lets TALUS treat each plan

as though it were a primitive operator during means-ends analysis. Analogical mode assumes the

presence of different information to that required by search control. Unlike macro-operator mode,

analogical replay requires that each plan include its derivational structure, which lets the system

adaptively reuse and modify each subplan included in the stored plan.

Currently, all plan knowledge is coded and added to memory by the programmer, and this must

be done for each domain in which TALUS operates. However, we feel that the above types of

information are adequate for some real-world planning tasks, and we hope to address this claim in

our future work.

A.3 The Overall Model

Despite the simplicity of the domains on which we have tested TALUS, we feel that its design meets

our research objectives, which involve identifying the conditions under which alternative planning

methods are most desirable. The uniform nature in which the system encodes domain knowledge

- as means-ends plans with associated derivational structures - let us carry out an experimental

study of the three problem-solving methods and compare the results in a principled manner.

TALUS is a 'rational' problem solver in that it always produces plans that fall within the deductive

closure of its domain operators. Neither the resulting plans nor the process used to produce them

are necessarily optimal, but our preliminary experiments suggest that both become more nearly

optimal as one adds more plan knowledge to memory.




